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(57) ABSTRACT

A system that applies attribute and topology based change
detection to networks of objects that were detected on previ-
ous scans of a structure, roadway, or area of interest. The
attributes capture properties or characteristics of the previ-
ously detected objects, such as location, time of detection,
size, elongation, orientation, etc. The topology of the network
of'previously detected objects is maintained in a constellation
database that stores attributes of previously detected objects
and implicitly captures the geometrical structure of the net-
work. A change detection system detects change by compar-
ing the attributes and topology of new objects detected on the
latest scan to the constellation database of previously detected
objects.
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BURIED OBJECTS IN SUBSURFACE TOMOGRAPHY
IMAGES RECONSTRUCTED FROM MULTISTATIC
ULTRA WIDEBAND GROUND PENETRATING RADAR
DATA,” and U.S. Provisional Patent Application No. 61/377,
324, filed Aug. 26, 2010, entitled “DART-BASED THREAT
ASSESSMENT FOR BURIED OBIJECTS DETECTED
WITH A GROUND PENETRATING RADAR OVER
TIME,” which are incorporated herein by reference in their
entirety.

This application is related to U.S. patent application Ser.
No. 13/219,410, filed Aug. 26, 2011, entitled “REAL-TIME
SYSTEM FOR IMAGING AND OBJECT DETECTION
WITH A MULTISTATIC GPR ARRAY,” U.S. patent appli-
cation Ser. No. 13/219,430, filed Aug. 26, 2011, entitled
“DISTRIBUTED ROAD ASSESSMENT SYSTEM,” and
U.S. patent application Ser. No. 13/219,435, filed Aug. 26,
2011, entitled “CLASSIFICATION OF SUBSURFACE
OBJECTS USING SINGULAR VALUES DERIVED
FROM SIGNAL FRAMES,” which are incorporated herein
by reference in their entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

The United States Government has rights in this invention
pursuant to Contract No. DE-AC52-07NA27344 between the
U.S. Department of Energy and Lawrence Livernmore
National Security, LLC, for the operation of Lawrence Liv-
ermore National Laboratory.

BACKGROUND

Many scientific, engineering, medical, and other technolo-
gies seek to detect the presence of an object within a medium.
For example, some technologies detect the presence of (i)
buried landmines in a roadway or a field for military or
humanitarian purposes, or (ii) potentially hidden explosives
emplaced above ground level among man-made clutter. Such
technologies may use ultra wideband penetrating radar tech-
nologies, such as ground-penetrating radar (“GPR”) antennas
that are mounted on the front of a vehicle that travels down a
roadway or across a field. The antennas could be directed into
the ground with the soil being the medium and the top of the
soil or pavement being the surface. In this case, GPR systems
can be used to detect not only metallic objects but also non-
metallic objects whose dielectric properties are sufficiently
different from those of the soil. When a radar signal strikes a
subsurface object, it is reflected back as a return signal to a
receiver. Current GPR systems typically analyze the strength
or amplitude of the return signals directly to identify the
presence of the object. Some GPR systems may, however,
generate tomography images from the return signals. In the
medical field, computer-assisted tomography uses X-rays to
generate tomography images for detecting the presence of
abnormalities (i.e., subsurface objects) within a body. In the
engineering field, GPR systems have been designed to gen-
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erate spatial images of areas below ground level, areas above
ground level that may contain emplaced explosives that are
potentially hidden, or the interior of concrete structures such
as bridges, dams, and containment vessels to assist in assess-
ing the integrity of the structures. In such images, the objects
of interest tend to appear as distinct bright spots. In addition
to referring to a foreign object that is within a medium, the
term “object” also refers to any characteristic of the medium
(e.g., crack in the medium and change in medium density)
that is to be detected.

Some current technologies seek to detect the presence of
new objects that were not detected in previous passes. For
example, a convoy of military vehicles may travel over a
certain roadway fairly often. If access to the roadway is not
tightly controlled, the military may need to check, each time
a convoy is to travel down the roadway, for the presence of
landmines or other objects that may pose a hazard to the
convoy. As another example, a civil engineering firm may
check bridges, dams, and other structures on a regular basis
(e.g., yearly) for the presence of new subsurface defects (e.g.,
cracks). Each time the structure, roadway or area is scanned,
large amounts of data may be collected and processed. For
example, the scan of the roadway may collect GPR return
signals every few centimeters. GPR systems may generate
image frames from the return signals and detect subsurface
objects inthose image frames. When these GPR systems have
access to data from previous scans of that structure or road-
way, the GPR systems may detect change by comparing (i)
images reconstructed along the latest scan to images recon-
structed along previous scans, or (ii) newly detected objects to
previously detected objects.

Current penetrating radar systems do not use results from
previous scans to perform change detection for objects in
real-time. A major hurdle in achieving this goal is that the cost
of storing the vast amounts of data collected from previous
scans and comparing data from those previous scans to the
latest scan may be prohibitive. A real-time system needs to
process the return signals from successive sampling locations
of'the vehicle down-track so that, in the steady state, the return
signals for one sampling location are processed within the
time between samplings. Moreover, in the case of a vehicle
that detects landmines, a real-time system may need to detect
the presence of the landmine in time to stop the vehicle
collecting the return signals before hitting the landmine.

SUMMARY

Attribute and Topology Based Change Detection in a Con-
stellation of Previously Detected Objects

A method in a computing device for determining whether
a designated newly detected object represents an object that
does not correspond to an object is a constellation of previ-
ously detected objects is provided. The method comprises, for
each of a plurality of edge attributes, providing a likelihood
function a value for the edge attribute; selecting a root previ-
ously detected object and a root newly detected object as
having a root correspondence; calculating previous values for
edge attributes for edges connecting the previously detected
object to the root previously detected object from attributes of
the previously detected objects; calculating new values for
edge attributes for edges connecting newly detected objects to
the root newly detected object from attributes of the newly
detected objects; and indicating that the designated newly
detected object is not a previously detected object based on
combining a likelihood for each edge attribute, the likelihood
for an edge attribute generated by the likelihood function for
that edge attribute applied to the previous value of that edge
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attribute given the new value of that edge attribute. The
method may also include assigning a cost to each pair of a
newly detected object and a previously detected object, the
cost being derived from the detection fitnesses and combined
likelihoods of the edge attributes that define topological con-
sistency and applying a minimal cost assignment algorithm to
the costs to identify possible correspondences between each
newly detected object and a previously detected object. The
method may also include indicating a newly detected object
corresponds to a previously detected object based on assign-
ment of the minimal cost assignment algorithm. The method
may also include generating a change index for the designated
newly detected object indicating whether the designated
newly detected object does not correspond to a previously
detected object based on a minimum computed assignment
costs to the previously detected objects. The method may also
be wherein the change index is further based on fitness of
detection of the object. The method may also be wherein the
attributes of the objects are selected from a group consisting
of location of the object, time the object was last detected,
angle of long axis of the object, and length and width of the
object. The method may also be wherein the edge attributes
are selected from a group consisting of a pointing vector from
a root detected object to a leaf detected object, difference in
times of most recent detection of the root detected object and
the leaf detected object, angle between long axis of the root or
leaf detected object and vector from that root detected object
to the leaf detected object, angle from a vector from the root
detected object to a first leaf detected object to a vector from
the root detected object to the leaf detected object, and angle
between the long axis of the root detected object and the long
axis of the leaf detected object.

A computer-readable storage device storing computer-ex-
ecutable instructions for controlling a computing device to
identify newly detected objects that correspond to previously
detected objects is provided. The identifying performed by
method comprising: for each of a plurality pairs of a previ-
ously detected object and a newly detected object, generating
a score based on a likelihood that the previously detected
object corresponds to the newly detected object; generating a
mapping from newly detected objects to corresponding pre-
viously detected object based on the generated scores; and for
each newly detected object that is mapped to a previously
detected object, indicating that the newly detected object
corresponds to that previously detected object. The method
may also be wherein the generating of the mapping includes
apply a minimal cost assignment algorithm to costs repre-
sented by the generate scores. The method may also be
wherein when no previously detected object maps to a newly
detected object, indicating that the newly detected object is
not a previously detected object. The method may also
include, for each of a plurality of edge attributes, providing a
likelihood function a value for the edge attribute; selecting a
root previously detected object and a root newly detected
object as having a root correspondence; calculating previous
values for edge attributes for edges connecting the previously
detected object to the root previously detected object from
attributes of the previously detected objects; calculating new
values for edge attributes for edges connecting newly
detected objects to the root newly detected object from
attributes of the newly detected objects; and generating the
likelihood by combining a likelihood for each edge attribute,
the likelihood for an edge attribute generated by the likeli-
hood function for that edge attribute applied to the previous
value of that edge attribute given the new value of that edge
attribute. The method may also be wherein selecting a root
previously detected object and a root newly detected object as
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having a root correspondence includes for pairs of a previ-
ously detected object and a newly detected object, evaluating
the objects of the pair as having a root correspondence by
calculating a mapping efficiency indicating how well the
newly detected object corresponds to the previously detected
object based on locations of the other newly detected objects
in a vicinity of a root object relative to locations of other
previously detected objects in the vicinity of a root object.
The method may also be wherein the objects are detected
based on return signals acquired by receivers from ground-
penetrating radar signals emitted by transmitters.

A computing device for identifying newly detected objects
that do not correspond to a previously detected object is
provided. The computing device comprises acomponent that,
for each of a plurality of pairs of a previously detected object
and a newly detected object, generates a score based on a
likelihood that the previously detected object corresponds to
the recently detected object; a component that generates a
mapping from newly detected objects to corresponding pre-
viously detected objects based on the generated scores; and a
component that, for each newly detected object that is not
mapped to a previously detected object, indicating that the
newly detected object does not correspond to a previously
detected object. The computing device may also be wherein
the component that generates the mapping applies a minimal
cost assignment algorithm to costs represented by the gener-
ate scores. The computing device may also be include a
component that selects a root previously detected object and
aroot newly detected object as having a root correspondence;
calculates previous values for edge attributes for edges con-
necting the previously detected object to the root previously
detected object from attributes of the previously detected
objects; calculates new values for edge attributes for edges
connecting newly detected objects to the root newly detected
object from attributes of the newly detected objects; and
generates the likelihood by combining a likelihood for each
edge attribute, the likelihood for an edge attribute generated
by the likelihood function for that edge attribute applied to the
previous value of that edge attribute given the new value of
that edge attribute. The computing device may also be
wherein the component that selects a root previously detected
object and a root newly detected object as having a root
correspondence, for pairs of a previously detected object and
anewly detected object, calculates a mapping efficiency indi-
cating how well the newly detected object corresponds to the
previously detected object based on locations of the other
newly detected objects relative to locations of other previ-
ously detected objects. The computing device may also be
wherein the objects are detected based on return signals
acquired by receivers from ground-penetrating radar signals
emitted by transmitters. The computing device may also be
wherein the component that generates the mapping applies a
minimal cost assignment algorithm to costs represented by
the generate scores.

Determining Root Correspondence Between Previously and
Newly Detected Objects

A method in a computing device for identifying a root
correspondence for previously detected objects and newly
detected objects is provided. The method comprises, for pairs
of a previously detected object and a newly detected object,
evaluating the objects of the pair as having a root correspon-
dence by calculating a mapping efficiency indicating how
well the newly detected object corresponds to the previously
detected object based on locations of the other newly detected
objects relative to locations of other previously detected
objects; and selecting a pair of a previously detected object
and a newly detected object as having a root correspondence
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based on the calculated mapping efficiency of that pair. The
method may also be wherein the mapping efficiency is a
fraction of newly detected objects that are proximate to a
previously detected object when spatially shifted by an offset
from the newly detected object of the pair to the previously
detected object of the pair. The method may also be wherein
the selected pair is the pair with the largest fraction. The
method may also include, when a pair has a mapping effi-
ciency that satisfies a root correspondence criterion, desig-
nating that pair as having a root correspondence without
calculating the mapping efficiency of other pairs. The method
may also be include prior to calculating the mapping effi-
ciency, generating a grid whose grid elements represent a
volume within a change detection window, with each grid
element indicating whether a previously detected object is
positioned within the volume that the grid element represents;
and wherein the mapping efficiency calculation includes:
determining, for each other newly detected object, the grid
element that contains the newly detected object when the
newly detected object is spatially shifted by an offset from the
newly detected object of the pair to the previously detected
object of the pair; and increasing the mapping efficiency
when the determined grid element contains a previously
detected object. The method may also be wherein the calcu-
lation of mapping efficiency includes determining whether
attributes of the previously detected object and the newly
detected object of the pair are consistent with being the same
object; and when the attributes are determined to be incon-
sistent, prohibiting the selection of the pair as having a root
correspondence. The method may also be wherein the objects
are subsurface objects within a medium.

A computer-readable storage device storing computer-ex-
ecutable instructions for controlling a computing device to
identifying a root correspondence for previously detected
object and newly detected objects is provided. The identify-
ing is performed by a method comprising: accessing a data
store storing of constellation of previously detected objects,
each previously detected object having a location; receiving
an indication of newly detected objects, each newly detected
object having a location; for pairs of a previously detected
object and a newly detected object, calculating a mapping
efficiency indicating how well the newly detected object cor-
responds to the previously detected object based on locations
of the other newly detected objects relative to locations of
other previously detected objects; and selecting a pair of a
previously detected object and a newly detected object as
having a root correspondence based on the calculated map-
ping efficiencies for the pairs. The method may also be
wherein the mapping efficiency is a fraction of the other
newly detected objects that are proximate to another previ-
ously detected object when spatially shifted by an offset from
the newly detected object of the pair to the previously
detected object of the pair. The method may also be wherein
the selected pair is the pair with the largest fraction. The
method may also include, when a pair has a mapping effi-
ciency that satisfies a root correspondence criterion, desig-
nating that pair as having a root correspondence without
calculating the mapping efficiency of other pairs. The method
may also include: generating a grid with grid elements that
each represent a volume within a change detection window
that includes the newly detected objects, each grid element
indicating whether a previously detected object is positioned
within the volume that the grid element represents; and
wherein the mapping efficiency calculation includes, for each
other newly detected object, determining the grid element
that contains the newly detected object when the newly
detected object is spatially shifted by an offset from the newly
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detected object of the pair to the previously detected object of
the pair; and increasing the mapping efficiency when the
determined grid element contains a previously detected
object. The method may also be wherein the calculation of
mapping efficiency includes determining whether attributes
of the previously detected object and the newly detected
object of the pair are consistent with being the same object;
and when the attributes are determined to be inconsistent,
prohibiting the selection of the pair as having a root corre-
spondence.

A computing device for identifying a root correspondence
for previously detected objects and newly detected objects is
provided. The computing device comprises a component that
determines how well the newly detected object corresponds
to the previously detected object based on locations of the
other newly detected objects relative to locations of other
previously detected objects; and a component that selects a
pair based on the determination. The computing device may
also be wherein the component that determines of how well
the objects of the pair correspond by calculating a mapping
efficiency based on the location of the other newly detected
objects and the other previously detected objects. The com-
puting device may also be wherein the mapping efficiency is
a fraction of newly detected objects that are proximate to a
previously detected object when spatially shifted by an offset
from the newly detected object of the pair to the previously
detected object of the pair. The computing device may also be
wherein, when a pair has a mapping efficiency that satisfies a
root correspondence criterion, that pair is designated as hav-
ing a root correspondence without calculating the mapping
efficiency for other pairs. The computing device may also be
wherein the component, that determines how well the newly
detected object corresponds to the previously detected object,
increases the mapping efficiency of the pair for each other
newly detected object when spatially shifted by an offset from
the newly detected object of the pair to the previously
detected object of the pair is near a previously detected object.
The computing device may also be wherein the objects are
subsurface objects within a medium. The computing device
may also include a component that detects objects based on
return signals acquired by receivers from medium-penetrat-
ing radar signals emitted by transmitters into the medium.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram that illustrates conceptually a scan.

FIG. 2 is a block diagram that illustrates the overall flow of
the change detection system in some embodiments.

FIG. 3 illustrates a distributionally attributed relational tree
with N vertices.

FIG. 4 illustrates the process of assigning previously
detected objects to newly detected objects.

FIG. 5 is a block diagram of the components of the change
detection system in some embodiments.

FIG. 6 is a flow diagram that illustrates the processing of
the “find root correspondence” component of the change
detection system in some embodiments.

FIG. 7 is a flow diagram that illustrates the processing of
the “compute mapping efficiency” component of the change
detection system in some embodiments.

FIG. 8 is a flow diagram that illustrates the processing of
the “generate cost matrix” component of the change detection
system in some embodiments.

FIG. 9 is a flow diagram that illustrates the processing of
the “compute topological consistency” component of the
change detection system in some embodiments.
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FIG. 10 is a flow diagram that illustrates the processing of
the “compute change indices” component of the change
detection system in some embodiments.

FIG. 11 is a flow diagram that illustrates the processing of
the “update constellation database component of the change
detection system in some embodiments.

DETAILED DESCRIPTION

A method and system is provided that applies attribute and
topology based change detection to networks of objects that
were detected on previous scans of a structure, roadway, or
area of interest. The attributes capture properties or charac-
teristics of the previously detected objects, such as location,
time of detection, size, elongation, orientation, etc. The topol-
ogy of the network of previously detected objects (the geo-
metrical structure of the network in xyz space) is maintained
in a constellation database that stores attributes of previously
detected objects and implicitly captures the geometrical
structure of the network. In some embodiments, a change
detection system detects change by comparing the attributes
and topology of new objects detected on the latest scan to the
constellation database of previously detected objects. The
change detection system that detects objects within a scan
may employ an object detection system that uses conven-
tional detection techniques. In some embodiments, the
objects are detected using the object detection system
described in U.S. patent application Ser. No. 13/219,410,
entitled “REAL-TIME SYSTEM FOR IMAGING AND
OBJECT DETECTION WITH A MULTISTATIC GPR
ARRAY,” which is being filed concurrently and is hereby
incorporated by reference. The change detection system
maintains a constellation database that contains aggregate
information, including aggregate values of attributes over
prior instances of specific objects that were detected in scans
prior to the latest scan. When the change detection system
receives information on newly detected objects on the latest
scan, it evaluates how well the newly detected objects corre-
spond to previously detected objects topologically and in
terms of attributes. The change detection system initially
selects a previously detected object that appears to corre-
spond to a newly detected object (in the sense that they
topologically appear to be the same object) using a spatial
network correspondence algorithm. Such a topological cor-
respondence is referred to as the “root correspondence”. The
change detection system evaluates the degree of correspon-
dence between other newly detected objects and other previ-
ously detected objects in the vicinity based on this root cor-
respondence. The root correspondence algorithm may, for
example, select a previously detected object and a newly
detected object that are topologically consistent and have
similar attributes. Once the change detection system selects a
pair of newly and previously detected objects as the root
correspondence, it calculates a “cost” associated with pairs of
other newly and previously detected objects in the vicinity of
the root correspondence. This cost reflects the belief that the
newly detected object of the non-root pair corresponds to the
previously detected object of that pair. For example, a low
cost may indicate that the objects more likely correspond. The
change detection system may then generate a change index
for each newly detected object to quantify the belief that it
might not have been previously detected (and thus constitute
achange). For example, a high change index may indicate that
the newly detected object is more likely to have never been
detected on any previous scan. The change detection system
may set the change index for a newly detected object to be the
cost of assigning that object to the previously detected object
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that it best corresponds with based on both attributes and
topological consistency. The change detection system may
determine a likely correspondence between previously and
newly detected objects using a standard minimal cost assign-
ment algorithm applied to spatially localized sets of previ-
ously and newly detected objects. After determining the opti-
mal correspondence, the change detection system updates
information in the constellation database of previously
detected objects with the values of the attributes of the corre-
sponding newly detected objects, as these attributes may vary
over time due to variations in scan path (e.g., direction of
travel or closeness to the center of the roadway), changes in
the surface (e.g., ruts in the roadway after a rainstorm), and so
on. If a newly detected object corresponds to no previously
detected object, then it may constitute a change. If so, the
change detection system adds that object as an additional
object to the constellation database, and it will be treated as a
previously detected object by subsequent scans.

In some embodiments, the change detection system iden-
tifies the root correspondence for previously and newly
detected objects by calculating a mapping efficiency for pairs
of'previously and newly detected objects. Mapping efficiency
reflects the degree of topological match between previously
and newly detected objects within a localized area given a
presumption of root correspondence between a specific pre-
viously detected object and a specific newly detected object
within that same area. The change detection system estab-
lishes the root correspondence as that pair of previously and
newly detected objects for which the associated mapping
efficiency is maximized. FIG. 1 is a diagram that illustrates
conceptually a scan. The subsurface 101 includes a surface
102 with a length 103, a width 104, and a depth 105. For
example, the length may be 20 kilometers, the width may be
5 meters, and the depth may be 2 meters. (Although the
change detection system is described primarily in reference to
detecting subsurface objects using a GPR system, one skilled
in the art will appreciate that the change detection system may
be used to detect above surface changes such as an explosive
emplaced in clutter.) The change detection system may per-
form processing to extract newly detected objects and update
the constellation database within a change detection window
106 that covers the localized neighborhood extending prior to
and ahead ofthe current location along the scan every time the
detection system detects another object. The change detection
window is a volume that extends for a prescribed window
length (e.g., 100 meters) for the width and depth of the
medium. FIG. 1 represents the previously detected objects as
O’s and the newly detected objects as X’s. To calculate the
mapping efficiencies for potential root correspondences (for
all possible pairs of an O and an X in the change detection
window), the change detection system considers the subsur-
face to be divided into cubic cells in xyz space. To speed up
the calculation of the mapping efficiency, the change detec-
tion system may maintain a data structure indicating the cubic
cells that contain a previously detected object. The change
detection system may use a binary flag (e.g., 0 or 1) to indicate
the absence or presence of a previously detected object within
acubic cell. The change detection system regards each pair of
previously and newly detected objects as a potential root
correspondence. For a candidate newly detected root corre-
spondence object, the change detection system computes a
vector in xyz space from that newly detected object to each of
the remaining newly detected objects in the neighborhood. It
then determines the endpoints of such vectors emanating
from the location of the candidate previously detected object
in the root correspondence pair, and counts the number of
cells of value 1 that contain the endpoints of those vectors.
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The mapping efficiency is then the number of such 1s divided
by the number of vectors that were considered, and it varies
from O to 1. The change detection system designates the pair
of previously and newly detected objects with the largest
mapping efficiency as the root correspondence. The change
detection system may use grid cells other than cubes. For
example, the grid cells may have a different width, length, and
depth. Also, the width, length, and depth of the grid cell need
not be constant. For example, depths of the grid cells may be
less toward the surface to reflect a higher confidence in the
location of detected objects that are nearer to the surface.

In some embodiments, the change detection system gener-
ates a cost matrix with one row for each newly detected object
in vicinity of the newly detected object in the root pair, and
one column for each previously detected object in that same
vicinity (excluding the previously detected object in the root
pair). For each entry in the cost matrix, the change detection
system generates a cost (or score) reflecting belief that the
newly detected object associated with that entry does not
correspond to the previously detected object associated with
that entry, given the root correspondence established as
described above. The change detection system calculates the
cost for each such pair based on (i) detection fitness for
objects in that pair and (ii) topological consistency between
those objects. The fitness of a detection is a measure of good-
ness or strength of an object detection, and it varies from O to
1. Topological consistency also varies from 0 to 1, and it
reflects the degree of consistency between attributes of the
previously and newly detected objects in the pair. These
attributes are referred to as edge attributes, and they include
the orientation of an object relative to its root, the pointing
vector from the root to the object, the orientation angles of the
object and its root relative to the pointing vector, and so on.
The edge attributes are derived from the attributes of the
objects (vertices) that they connect, where the vertex
attributes include object location, time of detection, orienta-
tion, length, width, elongation, etc. In some embodiments, the
topological consistency between a pair of previously and
newly detected objects is computed by evaluating the likeli-
hood of the attributes of the edge that connects the previously
detected object to its root relative to the attributes of the edge
that connects the newly detected object to its root. The joint
likelihood of edge attributes is modeled as the product of
marginal likelihood functions of one variable for each of the
edge attributes. The change detection system provides a mar-
ginal likelihood function for each edge attribute that takes the
value of the corresponding attribute for the edge that connects
the newly detected object to its root as the mode or peak
location. The variance of each marginal likelihood function
may be specific to each edge attribute, and reflects the degree
of uncertainty in attribute values captured by a distributional
attributed relational tree as described below in detail. The
change detection system then determines the minimal cost
assignment (one-to-one mapping) of newly detected objects
to previously detected objects from the cost matrix.

In some embodiments, after generating a cost matrix, the
change detection system updates the constellation database to
reflect the newly detected objects. The change detection sys-
tem may apply a minimal cost assignment algorithm to iden-
tify the correspondences between previously and newly
detected objects that represent the most likely correspon-
dence. One suitable minimal cost algorithm is described in
Orlin, J. B. and Ahuja, R. K., “New Scaling Algorithms for the
Assignment and Minimum Cycle Mean Problems”, Math-
ematical Programming, Vol. 54, 1992, pp. 41-56, which is
hereby incorporated by reference. After identifying the most
likely correspondence between the previously and newly
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detected objects, the change detection system updates the
constellation database for the previously detected objects to
reflect the attributes of the corresponding newly detected
objects. If a newly detected object does not have a corre-
sponding previously detected object, then the change detec-
tion system adds that newly detected object to the constella-
tion database.

FIG. 2 is a block diagram that illustrates the overall flow of
the change detection system in some embodiments. A con-
stellation database 201 contains the previously detected
objects. A “database retrieval” component 202 retrieves pre-
viously detected objects from the constellation database,
accepts newly detected objects detected by the object detec-
tion system on the latest scan, and saves them as new objects.
A “root correspondence” component 203 identifies a specific
pair of previously and newly detected objects as the root
correspondence for the purpose of generating the cost matrix.
A “cost matrix generation” component 204 generates the cost
matrix. A “change indexing” component 205 generates the
change indices for the newly detected objects from the cost
matrix. A “minimal cost assignment” component 206 identi-
fies the most likely correspondence between previously and
newly detected objects. An “update database” component 207
updates the constellation database based on the established
correspondence between the previously and newly detected
objects.

In some embodiments, the change detection system repre-
sents the newly detected objects as vertices in an attributed
relational tree (“ART”). An ART is an attributed graph G with
abi-level tree topology. FIG. 3 illustrates a relational tree with
N vertices (one root V, plus N, ~1 leaves

vl
and N,=N,~1 edges

Ng-1
{Ek }k:Eo

(E, connects V, to V,, ;). The change detection system uses a
relational tree to represent a localized network of newly
detected objects detected on the latest scan. The ART ontol-
ogy defines admissible entity types for vertices (e.g., the type
of'object detected) and the attributes of its vertices and edges.
Examples of attributes for the vertices and edges are repre-
sented in Table 1.

TABLE 1

Vertex Attributes A;

s fitness of the detection € [0, 1]

(X, 9%, 2) xyz location

(to, t1) time (first, last) detected

0 long axis angle in xy € (-n/2, 7/2)

Lw Length, width = 0

A=L/w elongation O or = 1

Edge Attributes a;

(A A, A,)  edge pointing vector

A, () 1ear= (t1)roor

[¢3 angle from the long axis of the root object to the edge
vector from the root object and this leaf object € (-n/2,
7/2)

B angle from the long axis of this leaf object to the edge
vector from the root object and this leaf object € (-n/2,
7/2)
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TABLE 1-continued -continued
Y angle from the vector of edge 0 in the DART to the edge Algorithm 1

vector from the root object of this leaf object € (-, )
o angle from the long axis of the leaf object to the long axis
of the root object € (—n/2, 7/2)

The change detection system may use a distributional ART
or DART D, which is a stochastic attributed relational tree
model whose edge attributes {a, ,i=0...n,-1,k=0...N,-1}
are replaced by marginal densities (likelihood functions) p(a,,
#ID) that impose probabilistic uncertainty on the edge
attribute values (FIG. 3). The change detection system may
model these likelihoods as symmetric functions in one
dimension (e.g., with a rectangular, triangular, or clipped
Gaussian pulse shape). The change detection system consid-
ers the attributes to be statistically independent. Thus, the
joint likelihood p,(alD) for edge E, is expressed as the prod-
uct of marginal likelihoods p(a, ;/D)i=0. . . n,—1. The change
detection system uses normalized likelihoods p(a, /D) as
shown in FIG. 3, to quantify the topological consistency
between DART D and the constellation database of previ-
ously detected objects using the following equations:

(1)

ng-1

BalD) = | play | D)

i=0

Plaix | D)2 plais | D) /maxp(aiy | D) (15

The change detection system represents newly detected
objects within a localized areas as

ot o),

and previously detected objects within that same general area
as

my—1
Q& V@0t

0.

The change detection system identifies a root correspondence
[V(£20), Vo (£2,)] between Q, and €2, such that vertex V,(€2,)
of Q, and vertex V(€2,) of Q, represent the previously and
newly detected object in the root correspondence. Algorithm
1 provides an algorithm for identifying a root correspon-
dence.

Algorithm 1

e(i,j)=0
fori'=0...m;—-1(@"=1)
a. Compute the direction vector from V; () to V, (Q)):
[A, AL A=
x(V(Q) = x(V; (), y(VA(Q)) - y(V; (), 2(V4(L)) - 2(V, ()]
b. Find the grid cell that the direction vector points to if it starts from
Vj (€2):

—
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x(Vi(Q0)) + Ay — Xin
& ]’

.17k = inf

(Y(Vj(ﬂo)) +Ay — Vouin ] (Z(Vj(ﬂo)) +A, - Zmin]
p ,

&

¢. Increment e(i, ) if that grid cell contains an element of Q:
ifcell (i”, ", k") =1thene(i,j) =e(i, ) + 1

51

The change detection system establishes the root corre-
spondence for the previously and newly detected objects to
maximize mapping efficiency. The change detection system
may define mapping efficiency e(i,j) as the fraction of the m,
vertices in €2, that have possible correspondences in Q, for
the potential root correspondence [V (£2,)E82,,V (£2,)EQ, ],
and as e(1,])=0 if V(£2,)E£2, and V,(Q, )EQ, are inconsistent
as to their type, orientation, and physical dimensions. The
change detection system generates a binary spatial index grid
for Q, inxyz space (e.g., representing the area along the entire
scan or along a portion of the scan). The cubic grid cells may
have a width defined by the error tolerance in relative loca-
tions of objects, and the grid origin may be at the minimum x,
y, and z over all previously detected objects within €,. The
change detection system sets the value of the grid cell to 1 if
it contains the centroid of an object from €. Once the change
detection system has identified a root correspondence, the
root vertices may be designated as the vertices of index 0 in
Qg and Q,.

The change detection system constructs a DART D by
imposing uncertainty on the ART formed from Q, with
Vo(€2,) as the root. The change detection system replaces
each edge attribute a, ; in the ART with a likelihood function
p(a, ;D) in DART D, where the peak and width of the likeli-
hood function vary in accordance with the values of the
attributes of the newly detected objects.

The change detection system transforms change detection
into a minimal cost assignment problem in which newly
detected objects captured in DART D are assigned to previ-
ously detected objects captured in the subset €2, of the con-
stellation database. Once formulated, this minimal cost
assignment problem can be solved using standard cost scaling
methods. In some embodiments, the change detection system
employs a cost function ¢ that depends on a variable u that
combines fitnesses of detections associated with a corre-
sponding pair of previously and newly detected objects, and a
variable v that quantifies topological consistency for that pair.
The variables u and v both vary from zero to one, and c(u,v)
is a continuous function defined on the unit square O=u, v=1.
The change detection system assumes that complete topo-
logical inconsistency (v=0) will lead to the highest possible
cost (c=1) and that complete absence of fitness (u=0) will also
lead to the highest possible cost (c=1). The lowest possible
cost (c=0) applies only when topological consistency and
detection fitness are both perfect (u=v=1) The change detec-
tion system may further take the cost trend for perfect topo-
logical consistency (v=1) as linear and decreasing from one to
zero with fitness u. These conditions lead to the following
boundary conditions for cost function c:

T+el, )
— €

o )=~

c(u,0)=1 (2a)

c(u,1)=1-u (2b)
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The simplest continuous function from zero to one over the
unit square that satisfies these boundary conditions is the
bilinear DART cost function represented as follows:

c(u,v)=l-uv

®

The change detection system characterizes topological
matching of DART D to £, as a minimal cost assignment
problem. To accomplish this, it generates a cost matrix {c;,}
from the cost function c(u,v). The rows j of {c, ;} represent

5

14

by leaf k+1 of DART D constitutes a change relative to the
constellation of previously detected objects. The change
detection system computes the change index T, , for DART
leaves as the minimum of the elements in column k of the cost
matrix. For the DART root, the change index is expressed as
the product of root fitness and the mean of the change indices
for the DART leaves. Although change index calculations use
the cost matrix, the calculations do not require the cost matrix
to be evaluated.

Algorithm 2

1. Generate the cost matrix and compute change indices for the leaves of DART D:
fork=0...m; -2
forj=0...my-2

cjx =1 =P, (alVo(£do) = V 41(Q)) | D) -

Th+l =

$(V 11 (Q0)) + (Vi1 (1))
2

min

Cik
J=0.mg-2

2. Compute the change index for the root of DART D:

=

s(Vo(£20)) +s(Vo(£2y))
= 2 =1 kZ; T

previously detected objects, and the columns k represent
newly detected objects. The elements c, , € [0,1] reflect the
cost of making the determination that previously detected
objectj and newly detected object k are really the same object.
The change detection system evaluates the cost matrix by
solving the minimal cost assignment problem for that cost
matrix.

The cost matrix {c; .} is an (m,—1)x(m,-1) matrix because
the root correspondence [V, (£2,)EQ, V,(€2,)EQ;] has
already been established between one pair of objects. The
element c,, thus represents the cost of mapping previous
object j+1 from Q, to recent objectk+1 from Q, (i.e., leafk+1
of DART D). The cost matrix elements c;;, may be derived
from the cost function c(u,v) as follows:

Cik =g, Vi) (4a)

5(Vi1(Q0)) +5(Viar (€11)) (4b)
Ujp = 3
vix = Pr(aVo(€do) = Vin1(€2)) | D) (4c)

where s(V) represents the fitness of vertex V, V(Qp)—V
(€2,) represents the edge E,,, from V,(€2,) to V,,,(€2,) and
a(E,, ) represents the vector of attributes for edge E,, ;. The
fitness u,; in Equation 4b is the mean of fitnesses for the
newly detected object that corresponds to vertex V,,, in
DART D and the previously detected object that corresponds
to vertex V;,, from €,. The combination of Equations 3 and
4a-c results in the following equation for cost matrix elements

Cres

Vir1(€0)) +5(Vir 1 ()
2

- s( Q)
cix =1 =P alVo(Qo) > Vi (D)) | D) -

Fork=0...m,-2, the change index T, , quantifies the like-
lihood (from O to 1) that the newly detected object represented
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The change detection system learns the true structure of the
network of previously detected objects over time by updating
the constellation database in real time as the vehicle moves
down-track. Objects never before seen are newly inserted into
the constellation database with their computed attribute val-
ues. Attributes of previously seen objects are updated recur-
sively with attribute values for the most recently acquired
instances of those objects (i.e., the corresponding newly
detected objects). Updates to the constellation database facili-
tate change detection for objects that may be encountered in
the future. Also, the performance of the change detection
system benefits over time from improvements in the accuracy
of the constellation database.

As for change index calculations, the change detection
system generates a cost matrix in order to update the constel-
lation database. However, in order to update the constellation
database, the change detection system also evaluates the cost
matrix by solving a minimal cost assignment problem. The
result of the cost matrix evaluation may be that fork=0. ..
m, -1, object k of Q, is assigned to object j(k) of Q,, where
j(k)<0 if object k of Q, is new (unassigned). If object V,(€2,)
is unassigned, the change detection system adds that object to
the constellation database as a new object. Otherwise, the
change detection system updates the attributes of object V,,,
(€, in the constellation database recursively with the
attributes of newly detected object V,(Q2,). FIG. 4 illustrates
the process of assigning previously detected objects to newly
detected objects. After generating the cost matrix 401, the
change detection system applies the minimal cost algorithm
to identify the pairs of previously and newly detected objects
that result in the minimal cost. In the example of FIG. 4, the
pairs of objects V,(€,) and V,(Q)), V,(Q,) and V, (£2,), and
V.,4(€2,) and V5(Q, ) have the minimum cost of assignment. In
addition to the object attributes of Table 1, the change detec-
tion system may also maintain object attributes that include
the number of times an object was detected (e.g., to assist in
the recursive updating) and its maximum fitness over all
detections.



US 9,239,382 B2

15

FIG. 5 is a block diagram of the components of the change
detection system in some embodiments. The change detec-
tion system includes a constellation database 501, a store for
newly detected objects 502, a cost matrix 503, and a grid data
structure for root correspondence calculations 504. The con-
stellation database contains the objects detected on previous
scans and their attributes. The newly detected object store
contains the objects detected on the latest scan along with
their attributes. The cost matrix store is used by the change
detection system to store the cost matrix. The grid data struc-
ture identifies the cubic cells within the xyz space of a local-
ized portion of the scan that contain previously detected
objects. The change detection system also includes a “find
root correspondence” component 510, a “generate cost
matrix” component 520, a “compute change indices” com-
ponent 530, and an “update database” component 540. The
“find root correspondence” component invokes a “compute
mapping efficiency” component 512 to calculate a mapping
efficiency and then identifies the root correspondence based
on the mapping efficiencies. The “generate cost matrix” com-
ponent invokes a “compute topological consistency” compo-
nent 522 to generate the costs for pairs of previously and
newly detected objects. The “compute change indices” com-
ponent computes the change index for each newly detected
object based on the cost matrix. The “update database” com-
ponent updates the constellation database based on the cor-
respondence between previously and newly detected objects
as determined from the cost matrix.

The computing devices on which the change detection
system may be implemented may include a central processing
unit and memory and may include, particularly in the case of
a system management workstation, input devices (e.g., key-
board and pointing devices), output devices (e.g., display
devices), and storage devices (e.g., disk drives). Computer-
readable media include computer-readable storage media and
data transmission media. The computer-readable storage
media include memory and other storage devices that may
have recorded upon or may be encoded with computer-ex-
ecutable instructions or logic that implement the change
detection system. The data transmission media is media for
transmitting data using signals or carrier waves (e.g., electro-
magnetism) via a wire or wireless connection. Various func-
tions of the change detection system may also be imple-
mented on devices using discrete logic or logic embedded as
an application-specific integrated circuit. The change detec-
tion system may be implemented on a computer system that is
local to a vehicle to which a linear array of penetrating radar
antennas is mounted for processing the return signals locally.
Alternatively, one or more of the components may be imple-
mented on a computer system that is remote from the linear
array. In such an alternative, the data used by the various
components (e.g., return signals and image frames) may be
transmitted between the local computing system and remote
computer system and between remote computing systems.

The change detection system may be described in the gen-
eral context of computer-executable instructions, such as pro-
gram modules, executed by one or more computers or other
devices. Generally, program modules include routines, pro-
grams, objects, components, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Typically, the functionality of the program modules
may be combined or distributed as desired in various embodi-
ments.

FIG. 6 is a flow diagram that illustrates the processing of
the “find root correspondence” component of the change
detection system in some embodiments. The component cal-
culates the mapping efficiency for pairs of previously and
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newly detected objects. In block 601, the component selects
the next newly detected object. In decision block 602, if all the
newly detected objects have already been selected, then the
component returns a pair of previously and newly detected
objects for which the mapping efficiency is largest as the root
correspondence, else the component continues at block 603.
In block 603, the component selects the next previously
detected object. In decision block 604, if all the previously
detected objects have already been selected, then the compo-
nent loops to block 601 to select the next newly detected
object, else the component continues at block 605. In block
605, the “compute mapping efficiency” component calculates
the mapping efficiency for a hypothetical root correspon-
dence between a specific pair of previously and newly
detected objects. In decision block 606, if the mapping effi-
ciency is perfect, then the component returns the previously
and newly detected object selected as the root correspon-
dence, else the component loops to block 603 to select the
next previously detected object.

FIG. 7 is a flow diagram that illustrates the processing of
the “compute mapping efficiency” component of the change
detection system in some embodiments. The component
computes mapping efficiency for a hypothetical root corre-
spondence between a pair of previously and newly detected
objects passed in as input. In block 701, the component
checks consistency of the vertex attributes of the previously
detected object and the newly detected object to ensure, for
example, that the elongation and orientation are similar
enough to indicate that they may represent the same object. In
decision block 702, if the attributes are consistent, then the
component continues at block 704, else the component con-
tinues at block 703. In block 703, the component sets the
mapping efficiency to zero, indicating that the input pair of
previously and newly detected objects cannot represent a root
correspondence, and then returns. In block 704, the compo-
nent selects the next newly detected object from the set of
newly detected objects in the vicinity of the input newly
detected object. In decision block 705, if all newly detected
objects in the vicinity have already been selected, then the
component continues at block 706, else the component con-
tinues at block 707. In block 706, the component computes
the mapping efficiency for the input pair of previously and
newly detected objects, and then returns. In block 707, the
component computes a direction vector from the newly
detected object of the input pair to the selected newly detected
object. In block 708, the component determines the cubic grid
cell of the grid data structure that contains the endpoint of the
direction vector, assuming it starts at the previously detected
object of the input pair. In decision block 709, if the cubic grid
cell contains a previously detected object, then the compo-
nent continues at block 710, else the component loops to
block 704 to select the next newly detected object in the
vicinity of the input newly detected object. In block 710, the
component increments the mapping efficiency for the input
pair and then loops to block 704 to select the next newly
detected object in the vicinity of the input newly detected
object.

FIG. 8 is a flow diagram that illustrates the processing of
the “generate cost matrix” component of the change detection
system in some embodiments. The previously and newly
detected objects in the root correspondence are supplied as
input to this component. In block 801, the component selects
the next newly detected object in the vicinity of the newly
detected object of the root pair. In decision block 802, if all
such objects have already been selected, then the component
returns, else the component continues at block 803. In block
803, the component selects the next previously detected
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object in the vicinity of the previously detected object of the
root pair. In decision block 804, if all such objects have
already been selected, the component loops to block 801 to
select the next newly detected object in the vicinity of the
newly detected object of the root pair, else the component
continues at block 805. In block 805, the component calcu-
lates the fitness u of the selected pair of previously and newly
detected objects. In block 806, the component invokes the
“compute topological consistency” component to calculate
topological consistency v for the selected pair of previously
and newly detected objects. In block 807, the component
generates the cost of assigning the selected previously
detected object to the selected newly detected object from the
fitness u and the topological consistency v, and then loops to
block 803 to select the next previously detected object in the
vicinity of the previously detected object of the root pair.

FIG. 9 is a flow diagram that illustrates the processing of
the “compute topological consistency” component of the
change detection system in some embodiments. For a pair of
previously and newly detected objects, the inputs to this com-
ponent are (i) the DART that contains the newly detected
object, and (ii) the edge connecting the previously detected
object to the previously detected object of the root pair. The
output of this component is the degree of topological consis-
tency (from 0 to 1) between (i) the edge connecting the newly
detected object to the newly detected object of the root pair in
the DART, and (ii) the edge connecting the previously
detected object to the previously detected object of the root
pair in the constellation database. In block 901, the compo-
nent initializes the normalized joint likelihood over all edge
attributed to 1. In block 902, the component selects the next
edge attribute. In decision block 903, if all attributes associ-
ated with the edge connecting previously detected objects
have already been selected, then the component returns the
joint likelihood of attributes for the edge in (ii) above given
the DART in (i) above normalized to a value from 0 to using
Equation 1a, else the component continues to block 904. In
block 904, the component computes the normalized marginal
likelihood for the next selected attribute of the edge connect-
ing previously detected objects using Equation 1b. In block
905, the component updates the product of normalized like-
lihoods over all edge attributes with the marginal likelihood
from block 904, in accordance with Equation la, and then
loops to block 902 to select the next edge attribute.

FIG. 10 is a flow diagram that illustrates the processing of
the “compute change indices” component of the change
detection system in some embodiments. The component gen-
erates the cost matrix and identifies the change index for each
newly detected object. In block 1001, the component invokes
the “generate cost matrix” component. In block 1002, the
component selects the next newly detected object that is not
the newly detected object of the root pair. In decision block
1003, if all such newly detected objects have already been
selected, then the component continues at block 1005, else
the component continues at block 1004. In block 1004, the
component computes the change index for the selected newly
detected object as the minimum of cost matrix elements for
that newly detected object over all previously detected objects
other than the previously detected object of the root pair, and
then loops to block 1002 to select the next newly detected
object. In block 1005, the component computes the change
index for the newly detected object of the root pair as the
product of the mean of change indices over all newly detected
non-root objects and the mean of fitnesses for the objects in
the root pair, and then returns.

FIG. 11 is a flow diagram that illustrates the processing of
the “update constellation database component of the change
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detection system in some embodiments. The component
updates the constellation database based on a minimal cost
assignment of previously detected objects to newly detected
objects. In block 1101, the component applies a minimum
cost assignment algorithm to the cost matrix (i.e., it evaluates
the cost matrix) to determine the most likely correspondences
of previously detected objects to newly detected objects. In
block 1102, the component selects the next newly detected
object. In decision block 1103, if all the newly detected
objects have already been selected, then the component
returns, else the component continues at block 1104. In deci-
sion block 1104, if the selected newly detected object has
been assigned to a previously detected object, then the com-
ponent continues at block 1105, else the component continues
at block 1106. In block 1105, the component updates the
attributes of this previously detected object in the constella-
tion database with attributes of the selected newly detected
object, and then loops to block 1102 to select the next newly
detected object. In block 1106, the component adds the
selected newly detected object to the database as a new object
and then loops to block 1102 to select the next newly detected
object.
From the foregoing, it will be appreciated that specific
embodiments of the invention have been described herein for
purposes of illustration, but that various modifications may be
made without deviating from the scope of the invention.
Accordingly, the invention is not limited except as by the
appended claims.
We claim:
1. A method in a computing device for determining
whether a designated newly detected object represents an
object that does not correspond to an object in a constellation
of previously detected objects, the method comprising:
for each of a plurality of edge attributes, providing a like-
lihood function for generating a matching score indicat-
ing how well values for the edge attribute match;

selecting a root previously detected object and a root newly
detected object as having a root correspondence;

calculating previous values for edge attributes for edges
connecting the previously detected object to the root
previously detected object from attributes of the previ-
ously detected objects;

calculating new values for edge attributes for edges con-

necting newly detected objects to the root newly
detected object from attributes of the newly detected
objects; and

indicating that the designated newly detected object is not

a previously detected object based on
for each of a plurality of pairs of a previously detected
object and a newly detected object,
for each edge attribute, generating a matching score
using the provided likelihood function for the edge
attribute to indicate how well the previous value of
the edge attribute of the previously detected object
ofthe pair and the new value of the edge attribute of
the newly detected object of the pair match; and
combining the matching scores for the edge attributes
into a combined matching score to indicate how
well the previously detected object and the newly
detected object of the pair match; and
applying a minimal cost assignment algorithm to costs
derived from the combined matching scores to iden-
tify which newly detected objects correspond to
which previously detected objects.

2. The method of claim 1 including generating a change
index for the designated newly detected object indicating
whether the designated newly detected object does not cor-
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respond to a previously detected object based on a minimum
computed assignment costs to the previously detected
objects.

3. The method of claim 2 wherein the change index is
further based on fitness of detection of the object.

4. The method of claim 1 wherein the attributes of the
objects are selected from a group consisting of location of the
object, time the object was last detected, angle of long axis of
the object, and length and width of the object.

5. The method of claim 1 wherein the edge attributes are
selected from a group consisting of a pointing vector from a
root detected object to a leaf detected object, difference in
times of most recent detection of the root detected object and
the leaf detected object, angle between long axis of the root or
leaf detected object and vector from that root detected object
to the leaf detected object, angle from a vector from the root
detected object to a first leaf detected object to a vector from
the root detected object to the leaf detected object, and angle
between the long axis of the root detected object and the long
axis of the leaf detected object.

6. A method in a computing device for determining
whether a designated newly detected object represents an
object that does not correspond to an object in a constellation
of previously detected objects, the method comprising:

for each of a plurality of edge attributes, providing a like-

lihood function for the edge attribute;
selecting a root previously detected object and a root newly
detected object as having a root correspondence;

calculating previous values for edge attributes for edges
connecting the previously detected object to the root
previously detected object from attributes of the previ-
ously detected objects;

calculating new values for edge attributes for edges con-

necting newly detected objects to the root newly
detected object from attributes of the newly detected
objects; and

indicating that the designated newly detected object is not

a previously detected object based on

combining a likelihood for each edge attribute, the like-
lihood for an edge attribute generated by the likeli-
hood function for that edge attribute applied to the
previous value of that edge attribute given the new
value of that edge attribute;

assigning a cost to pairs of a newly detected object and a
previously detected object, the cost being derived
from the detection fitnesses and combined likelihoods
of the edge attributes that define topological consis-
tency; and

applying a minimal cost assignment algorithm to the
costs to identify possible correspondences between
each newly detected object and a previously detected
object.

7. The method of claim 6 including indicating a newly
detected object corresponds to a previously detected object
based on assignment of the minimal cost assignment algo-
rithm.

8. A computer-readable medium that is not a transitory,
propagating signal, the computer-readable medium storing
computer-executable instructions for controlling a comput-
ing device to identify newly detected objects that correspond
to previously detected objects, the computer-executable
instructions implementing a method comprising:

providing values for edge attributes for edges connecting

the previously detected objects to a root previously
detected object;
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providing values for edge attributes for edges connecting
the newly detected objects to a root newly detected
object;
for each of a plurality pairs of a previously detected object
and a newly detected object, generating a score based on
a likelihood that the previously detected object corre-
sponds to the newly detected object, by:
for each edge attribute, generating a matching score
using a likelihood function for the edge attribute to
indicate how well the values of the edge attribute of
the previously detected object and the newly detected
object of the pair match; and

combining the matching scores for the edge attributes
into a combined matching score to indicate how well
the previously detected object and the newly detected
object of the pair match; and

generating a mapping from newly detected objects to cor-
responding previously detected object based on the
combined matching scores by applying a minimal cost
assignment algorithm to costs represented by the com-
bined matching scores

wherein each newly detected object that is mapped to a
previously detected object indicates that the newly
detected object corresponds to that previously detected
object.

9. The computer-readable medium of claim 8 wherein
when no previously detected object maps to a newly detected
object, indicating that the newly detected object is not a
previously detected object.

10. The computer-readable medium of claim 8 wherein
selecting a root previously detected object and a root newly
detected object as having a root correspondence includes for
pairs of a previously detected object and a newly detected
object, evaluating the objects of the pair as having a root
correspondence by calculating a mapping efficiency indicat-
ing how well the newly detected object corresponds to the
previously detected object based on locations of the other
newly detected objects in a vicinity of a root object relative to
locations of other previously detected objects in the vicinity
of'a root object.

11. The computer-readable medium of claim 8 wherein the
objects are detected based on return signals acquired by
receivers from ground-penetrating radar signals emitted by
transmitters.

12. The computer-readable medium of claim 8 including
prior to generating the scores, identifying a root previously
detected object and a root newly detected object as having a
root correspondence and wherein the generating of a score for
a previously detected object and a newly detected object
factors in location of the previously detected object relative to
the root previously detected object and location of the newly
detected object relative to the root newly detected object.

13. The computer-readable medium of claim 8 including
prior to generating the scores, identifying a root previously
detected object and a root newly detected object as having a
root correspondence and wherein a score is not generated for
pairs that include either the root previously detected object or
the root newly detected object.

14. A computing device for identifying newly detected
objects that do not correspond to previously detected objects;
comprising:

a computer-readable storage medium storing values for
edge attributes for edges connecting the previously
detected objects to a root previously detected object and
values for edge attributes for edges connecting the newly
detected objects to a root newly detected object;
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a component that, for each of a plurality of pairs of a
previously detected object and a newly detected object,
generates a score based on a likelihood that the previ-
ously detected object corresponds to the newly detected
object, by:

for each edge attribute, generating a matching score using
a likelihood function for the edge attribute to indicate
how well the values of the edge attribute of the previ-
ously detected object and the newly detected object of
the pair match; and

combining the matching scores for the edge attributes into
a combined matching score to indicate how well the
previously detected object and the newly detected object
of the pair match;

a component that applies a minimal cost assignment algo-
rithm to costs represented by the combined matching
scores to identify newly detected objects that correspond
to previously detected objects; and

a component that, for each newly detected object that does
not correspond to a previously detected object, indicat-
ing that the newly detected object does not correspond to
a previously detected object.

15. The computing device of claim 14 including a compo-

nent that

selects a root previously detected object and a root newly
detected object as having a root correspondence;

calculates previous values for edge attributes for edges
connecting the previously detected object to the root
previously detected object from attributes of the previ-
ously detected objects;

calculates new values for edge attributes for edges connect-
ing newly detected objects to the root newly detected
object from attributes of the newly detected objects; and

generates the likelihood by combining a likelihood for
each edge attribute, the likelihood for an edge attribute
generated by the likelihood function for that edge
attribute applied to the previous value of that edge
attribute given the new value of that edge attribute.

16. The computing device of claim 15 wherein the compo-
nent that selects a root previously detected object and a root
newly detected object as having a root correspondence, for
pairs of a previously detected object and a newly detected
object, calculates a mapping efficiency indicating how well
the newly detected object corresponds to the previously
detected object based on locations of the other newly detected
objects relative to locations of other previously detected
objects.
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17. The computing device of claim 16 wherein the objects
are detected based on return signals acquired by receivers
from ground-penetrating radar signals emitted by transmit-
ters.

18. A method performed by a computing device for deter-
mining which objects in a first set of objects are the same
objects in a second set of objects, comprising:

providing values for edge attributes for edges connecting
the objects in the first set to a first root object of the first
set;

providing values for edge attributes for edges connecting
the objects in the second set to a second root object in the
second set;

for pairs of objects that include an object in the first set and
an object in the second set, generating a score indicating
how well the objects of the pair match based on com-
parison of the values of the edge attributes of the objects,
the score being generated by combining a likelihood
score for each edge attribute, each likelihood score for an
edge attribute generated by a likelihood function indi-
cating a likelihood that the objects of the pair match
based on the values for the edge attributes for the objects
of the pair; and

applying a minimal cost assignment algorithm to costs
derived from the scores to identify an assignment of
objects in the first set to objects in the second set

wherein an object in the first set corresponds to an object in
the second set when the minimal cost assignment algo-
rithm assigns that object of the first set to that object of
the second set, and

wherein the first set represents newly detected objects and
the second set represents previously detected objects,
and the first root object and the second root object are
identified initially as best matching objects.

19. The method of claim 18 including prior to generating
the scores, identifying a root object from the first set and a root
object of the second set that are considered to be the same
object, wherein the objects have locations and wherein
attribute values for an object in the first set is based at least in
part on location of the object relative to the root object of the
first set and attribute values for an object in the second set is
based at least in part on location of the object relative to the
root object of the second set.
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